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1. INTRODUCTION

Many problems in control system design or economic system modelling

naturally arise in the multiple decision-makers framework. The study of this

type of problems is called game theory. The decision-makers are considered

as players striving to optimize their respective performance indices under

some a priori determined ground rules.

Various types of rules (called strategies) have been developed.

Some have only a single performance index; for example, team problem (players

optimize the same index but possible under different information) [1], and 2-

person zero-sum game (the performance index is the cost of one player and the

payoff of the other) [21. Some games have multiple criteria; for example,

the 2-person nonzero -sum game under the Nash equilibrium concept (the players

optimize their respective performance simultaneously) [3], or under the

Stackelberg equilibrium concept (the leading player optimizes his performance

index knowing how the passive player will react) [4].

Game theory, though can be considered as a generalization of the

single person, single-criterion control theory, is a great deal more complex.

In particular, for the dynamic Stackelberg Game, even in the seemingly simple

case of linear-quadratic problem, it is extremely difficult to obtain any

analytic solution. Therefore, a modified scheme, the Restricted Stackelberg

Problem (RSP) (5], 16), is proposed. This is a Stackelberg game with a

specific information structure which allows the leader to announce his

strategy first but to act only after the follower has acted. By choosing
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different representations of a given strategy, the leader can mnipulate

the follower in various ways. In particular, the leader may be able to force

the follower to act as if he is also mimimizing the leader's cost. In RSP,

we also restrict attention only to those Stackelberg solutions which attain

the lower bound of the leader's cost (the team cost). The focus of this

report is on RSP for a special class of problem, namely, discrete-time,

finite-horizon, linear-quadratic-gaussian.

RSP, if solvable, is a powerful modelling tool. It can be readily

applied to many economic and control problems where the hierarchy of opera-

tion clearly exists or is desired, and it is analytically tractable. In

economics, the government - industry - consumers hierarchy can be naturally

posed as a tri-level RSP. The government announces its regulation policy

first, the industry then stipulates a pricing strategy based on the announced

regulation. The consumers act first by making certain amount of purchase from

the industry based on the price of the product or service Lhe industry supplies.

In engineering, any large scale system wherein a single centralized controller

is impractical can be potentially modelled in the RSP framework with layers of

decentralized controllers with different priority of operation.

The investigation in this report is carried out using the dynamic-to-

static conversion, which collapses the dynamic evolution of a variable (over

finite horizon) into a single vector. A dynamic problem can then be converted

into the static domain, and the results proven on this domain can be trans-

ferred back to the dynamic domain. One feature of this technique is that it

bypasses a great deal of algebra to make the qualitative features more

apparent, which is versatile in establishing the existence of solutions.
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However, in doing so, it sacrifices the recursiveness of the solutions, which

may be a crucial requirement in the implementation of the solutions.

Three classes of information structures are considered: the deter-

ministic centralized, the deterministic decentralized, and the stochastic.

Most of the results are obtained for the deterministic centralized information

structure. Sufficient conditions for existence of RSP solutions are derived.

Some qualitative aspects of RSP are also examined: the dependence of solva-

bility of RSP on the specific choice of information and representation, the

*.~~**stationarity and the convexity conditions, the advantage of linear solutions,

and some interpretation of the given conditions. The decentralized problem

t. is approached in the same manner as the centralized case. The results are

similar if the initial data distribution is assumed known. The stochastic

RSP with perfect state information cannot be solved because of the inability

~ K of the leader to detect whether the team solution is enforced or not. To

bypass this difficulty, we include both the state and the follower's control

v. to leader's information. The problem then becomes similar to the other cases.

' ~.'In the situation where the conditions mentioned above are not

satisfied, the possibility of the leader using a large threat (penalty to

~ follower's deviation from the team trajectory) strategy to achieve his near-

team cost is considered. it is shown that under certain mild conditions, the

infinite threat can achieve the team cost for the leader. it is, therefore,

reasonable to ask the questions under what conditions can the leader achieve

a cost arbitrarily close to his team cost using large but finite threat? It

is shown that in general the leader does not possess such a strong

position and the case in which it holds is a variety in the parameter space.



I P This report is structured into four sections. The definitions

and problem formulation are stated in Chapter 2. Chapter 3, the main bulk

- of the work, is devoted to the various cases of RSP. The concluding section,

Chapter 4, suizurizes the report and points out some future directions.
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2. PROBLEM FOULUATION

2.1. Introduction

By an abuse of language, we shall also let RSP stand for the

equilibrium strategy to be investigated in this report, which is a restricted

" .-version of the Stackelberg equilibrium strategy as briefly discussed in sec-

tion 1. Stackelberg strategy was introduced by von Stackelberg (12] in the

static setting. Generalization to dynamic case was first done in [4]. The

idea is that the commanding player (leader) announces his strategy at each

stage knowing how the follower will react to his strategy. The follower then

!optimizes his performance index based on the leader's strategy. This equilib-

rium strategy concept, although very appealing in terms of modelling, is

1difficult to solve analytically in general (in the closed loop dynamic case).
;' The difficulty lies in the fact that the principle of optimality fails to

apply due to the dependence of the closed loop strategy on the length of the

F. horizon. To circumvent this difficulty a restricted type of Stackelberg

strategy is considered in [5], [61. This strategy concept, RSP, focuses on

the Stackelberg pair that achieves the team cost for the leader. The leader,

: using the non-unique representation of his team strategy, adds on redundant

terms that have values zero on the team trajectory. By choosing the appro-

- priate redundancy (or the threat to the follower) the leader may be able to

force the follower to act as if he is also optimizing the leader's performance.

In this chapter, we state the general definitions of Stackelberg,

Team, and Restricted Stackelberg problems. Then we examine some of the past

highlights and show how the present work fits into the lines of development.

*-: . . . . . . . . . ' . . . . . . . . .
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2.2. Definitions

Assume some underlying probability space ( , F, P) is given.

Let X (0): 0-) Rn , w (k): 0 R , Vi(k):Q- R kCLO, 1,--, N-11,

- i F .1,2) , be random variables with respect to (0, F, P), whose statics

are assumed perfectly known.

We consider a discrete, time-varying, N-stage dynamic system

with ul (k) and u2 (k) as input commands and W (k) as noise disturbance

into stage k:

x (k + I) - f (k, x (k), u1 (k), u2 (k), W (k)) k - 0, -- , N-1 (2.1)

At stage k, assume information vectors Zi (k) are given:

* Zi (k) Zi (k, x (0), -- , x (k), u1 (0), -- , ul (k-1),

u2 (0), -- , u2 (k-I), yi (k)) (2.2)

Let Fi (k) be the Zi (k)-generated G-algebra.

We require that ui (k).I U (k), where Ui (k)
SYfi I .ki. J. R ik (Zi(k))is Fi (k)-measurable)

*R  The control objective of player i is to find a sequence of

admissible controls according to some equilibrium solution concept based

" .on the cost index.

I N-1 2N-IJi ( t u (k) -I, 2 1- E I L ik (x(k), ul (k),
" k-0,-Ik-0

u2 (k), k) + Pi (x(N)) 1 (2.3)

: We now define the following equilibrium sclution concepts.

*'Definition 2.1

(k~N-1"u (k), u2  k-O is a closed loop Stackelberg sequence with player 1 as

leader, player 2 as follower if it solves

N' 
.
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IMin N-i A - N-1 N-1
U1()EU 1(k) ( t (k) 1 0 2 , 2k tul (k) .O )

A - N-1 N-i
where u. 2 (k, u U 1 (k) 1.)'ko0 is

A N-i N-1 N-1.
.U2 (k, t. u 1 (k)) - arg Min (L u1 (k) (k)J )-

U (k) CU 2(k) 1 k-O 2 -
2 2

Definition 2.2

(k) lit N-1
2 (k. is a team solution pair for the leader if it solves

Min J (U 1 (0), -,U 1 (N-1), u2 () -U2  (N-i1))
Uj (k) E U~ (k)
i1 1, 2
km 0, --, N-i

Definition 2.3

Let Z1 (k, u2 (k), u2 (k-i), -,u 2 (0)) be some information set.

1  2Z 2 k, u
Then, (l ZI(k, (k), u (0)), u2 (k34-1 is the solution of RSP if

it solves

Lu t (klN-I rmi jU
u2  klko-O agm 2 (u1 (Zl (0, u2 (0)) -- 1 (Z1 (N-i),

u2 (k) E U2 (k)
k-0, -- , N-i

u2 (N-1), u- U2 (O))),u2 (0), -- U2 (N-i))

and u, (k) t u( (kut(k), ,,(k-i),-- u (0))) VkE {0,1, -,N-l}

ul(Z -ku 2.
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2.3. Problem Formulation

In this report, we consider specifically the discrete, finite-

horizon, linear-quadratic deterministic and stochastic gaussian systems.

. The technique employed is the dynamic-static conversion. The time

evolution is collapsed into a single long column vector. The system can then

be viewed as a static entity; however, the relationship between these time-

r? vectors has to be restricted by causality. Thus, the techniques available

in the static case can be readily applied under the causality constraint.

The system under consideration is described by

X(k+l) -A(k)X(k) + B (k) U1 (k) + B2 (k) U2 (k) + W(k) (2.4)

k -0, 1, -- , N-1

U1 (k), U2 (k) are the controls of players 1 and 2 respectively at stage k.

The cost function of player i is given as: N-1

Ji ( JUi (k)), LU (k))) - E LX (N) Qi(N)X(N) +k=0[X (k) Qi(k)X(k)

+U i  (k) Rii(k)Ui(k)+Uj (k)R j(k)U (k)]}, i,J-1,2, i-j. (2.5)

Assume also

SQi(k) > 0 R (k)>0 i, j 1,2

W(k) N (0, z(k))

SX0 ~N (Xo2 0
0 0

Note that in the usual Nash formulation, R12 need not be positive definite.

It will be shown in Chapter 3 that this is a necessary condition for RSP.

,.. .-. -. -.. .-.. ..; . - ... . . . . ,- ... .. . ... . .. . . . ... . ... ..
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We convert the above dynamic system into the static domain via the

following:

Define

.:''""' '"X "M XNi 'Ui" 'NI W M -.. (2.6)

Then the state equation collapses to2 0
*x Li5J x(o) + r (o ,

SDX() + Z i U +W (2.7)
( , 0)i-I 0

,'.i" S imilar ly,

E [X' QX + U R U + U (2.8)

Qi diag [ Qi(O), -- , Q(N) I
4%

Rij diag [ Rij(0), -- , R j(N-l)]

Causality is an important property of the functional mappings in this setting.

It is characterized in a simple way for matrices, namely, the block lower

. .°triangularity implies causality.

We therefore define the following:

Definition 2.5:

A matrix F - [fiJ]' fij " some matrix with known dimension

(P causal if f. - 0 J>i
, . strictly causal if f ] - 0 VJ >i

F;j
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The advantage of working in this pseudo-static domain, as stated before,

is the simplicity of algebra and the applicability of static result in a

straight-forward manner. However, same results may also be obtained by

using dynamic programming.

2.4. Past Development in RSP and Team Problem

To study RSP, it is certainly necessary to solve the corresponding

team problem. For centralized, deterministic information structure, the

team problem is the same as the optimal control problem, the solution of

which is of course well known. Unfortunately, in the general decentrali-

zation case, it requires an infinite dimensional filter to generate all

the estimates. Therefore, due to realizability, additional assumptions on

* . the information have to be made. One type of assumption ([18], [19])

restricts information to that generated by a finite-dimensional, linear

filter, the optimal solution can then be found. Another type of assumption

((8], [9], [10]) is the nested information where observations are shared

with one-step delay. This report uses the similar idea as (18], (19]).

" *~ Parameter optimization is used to find the best linear strategies. Due to

the conversion to the static domain, the sufficient conditions are stated

in particularly simple forms.

RSP is formally investigated by Basar [5] and Papavassiloupous [6,7]

under perfect state information. Sufficient conditions are obtained in

each case for the RSP solution to exist. However, some issues are left

mostly unaddressed: the effect of leader's information structure on the

I.!



solvability of RSP, RSP under large threat, possibility of suboptimal RSP

solution should the sufficiency conditions fail, the qualitative interpre-

- tation of the conditions etc. The stochastic RSP given the state information

'5 7 only is in general unsolved and appears unsolvable in the dynamic case. It

is solvable in the static setting, however, as in [13], [14]. In this report,

QA" we include the follower's past control in the leader's information structure

and are, therefore, able to solve the problem. We also solve the determi-

nistic decentralized RSP under the linear strategy constraint (to bypass the

difficulty in the general team problem). The centralized deterministic RSP

is also studied, and some of the previously little touched issues are ex-

plored. However, there still exists a great deal of open problems, especially

with regard to the near-optimal solutions in the stochastic RSP.

1'

.L4.......... .....
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3. RESTRICTED STACKELBERG PROBLEM

3.1. Introduction

Dynamic RSP has been studied in [5], [6], in which, conditions

for enforcing the team solution for the leader are obtained under perfect

state information in the deterministic problem. Some results on the

static stochastic RSP are presented in [13], [14]. Here we first examine

the deterministic RSP under various information structures and then the

stochastic RSP under a specific information pattern.

i i.The RSP is approached as follows:

i. Solve the team problem for the leader under the given information

structure.

2. Choose one representation of leader's team strategy such that it is

dependent on the follower's decision non-trivially.

3. Find conditions this representation must satisfy such that follower's

-: - decision from his own optimization coincides with the team solution.

We shall consider the following information structures:

(Let Zi(k) - information available to Ui(k))

Deterministic

a. Z1 (k) - [U 2 (k), U2 (k-1),--,U2 (O), X0]

Z2(k) a [X(k), X(k-1),--,X ]

b. Z (k) - [X(k), X(k-l),--,Xo]
0

*Z Z(k) - X(k), X(k-l),--,X I

2 0
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c. Zl(k) - [U2 (k), U2 (k-l),--,U2 (O),X(k),X(k-1),--,Xo]

Z2 (k) - [X(k), X(k-1),--,Xo ]

d. Zl(k) - [Yl(k),Yl(k-l),--,Y(O)]

Z (k) - [Y (k),Y (k-1.),-Y()2:i 2 2 ' 2( 1

(Y1() Y2 () are non-nested.)

Stochastic

-. . Z1(k) - [U2 (k),--,U2 (O),X(k),X(k-l),--,X(O)]

Z2 (k) - [X(k),X(k-l),--,X(O)]

Note:

I. We have allowed Ul(k) to be dependent on U2 (k). This certainly is not

physically possible since UI(k) needs a nonzero amount of time for

computation. However, here we assume that the interval between two

stages is long relative to the delay, thus, we can consider the

strategies U (k) and U2 (k) as being implemented at the same stage.

If precision is needed to include this delay in the model, we can sub-

- divide the interval and let Ul(k) depend on U2 (k-1),--, U2 (0) only.

In either case, the subsequent results are the same. Care only needs

to be taken to restrict the matrix coefficient mapping U2 to U1 to be

causal (block lower triangular) in the former case and strictly causal

(strictly block lower triangular) in the latter.

2. Cases (a), (b), (c) are considered to examine the impact of leader's

information structure on the solvability of RSP. Case (d) in the

general deterministic decentralized information, in which, the team

solution cannot be obtained in general. Therefore, the best linear

a!
- .,

. . . .
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I strategies are derived and RSP is solved based on the assumption that

leader enforces these strategies. In the stochastic RSP with only the

state information, the leader has no way of enforcing his team solution

* since the team trajectory depends on the sample path of a gaussian

random process. In (e), we include the follower's past strategies as

well so that the leader can use them for the threat.

3. The solvability of RSP is also viewed from the asymptotic behavior of

the follower's strategy as a function of the strength of leader's

threat. It is shown that under some mild conditions, if the leader

threatens to play an infinite control for any deviation of the follower's

strategy from the desired value, leader team solution can be enforced.

Since infinite gain is not physically possible, we examine the possibil-

ity of a large, finite threat. It is shown, with aid of an example, that

arbitrary closeness to the team cost may not be forced with a linear

representation no matter how large (but finite) the threat is. However,

if discontinuous strategies are allowed for the leader, it can be shown

that arbitrary closeness to the team cost can then be achieved with a

large, finite threat.
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3.2. Centralized Deterministic RSP

RSP under information structures (a), (b), (c) is examined in

"this section. Non-void conditions are expected to exist in each case

since the expected team values (of states and follower's control) are

known exactly, and an impulsive punishment can be used to threaten the

follower. Suppose finite gain is required for the leader, then the

leader's strategy has to satisfy some conditions.

We first derive the team solution for the leader. Then with

the general structure on the leader's strategy (only differentiability

is assured), sufficient conditions (first order stationarity and second

order comoxity conditions) are derived for the existence of finite

i~so lut ions.

The team solution can be easily obtained using dynamic pro-

,.:'2)gramming, but to stay consistently with the converted scheme, we shall

derive it under the present setting.

3.2. 1. Team solution

In this section, we derive the open loop and closed loop team

solution for the leader using the converted system.

Consider (2.7), (2.8) as a static team optimization problem with cost.

il -[(DX 0 + H1 UI + H2 U2 ) Q, (DXo + HI UI + H2 U2) + U1  R1 1 UI +

U2  R1 2 U 2  (3.1)

*--',A .. -- . . . . . . . . .
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p
Using the deterministic counterpart of Radner's Theorem [1], set

P ]- 0 i- 1,2 (3.2)

where

P - diag [P(O),--,P(N-l)] (3.3)

P(k) - projection onto the space spanned by [X(O),--,X(k)] (3.4)

Then,

Ui -P [(Hi Q, Hi + R12) H I Q (DX +H U)]

-- -P [R12  Hi Q1 X1 (3.5)

r. t

Note that we have used the assumption R12  0, since otherwise impulsive U

may result.

We notice that Uit has a non-causal dependence on X. Therefore, we use the

following transformation to obtain a causal representation.

Proposition 3.1
Given Ui as

-- R' ii

-- Assum

71-1 d (1 )B (k) -dl B (k)-" I k,k+l I (k k,k+l2FGk  -d () B (k) I- dkk(2 B2 (k) is invertible (3.6)

: i ,k+il Ik "kk+1 2 (

where

(i) N [Rs 1 (k) Bi' (k) i' (A-l,k) Q (A) 4l. (A (j) +
dk,k+l -l 1 jnk+I

B1 (j) g1 (j) + Bi (J) g2 (J))] (3.7)
°

'

a..' ° -' ' .- v v -..'- ......- .J J - .J. ; " o,. -- ,- .. = ... .... - .- . ... .. .. : . -.--- -
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g, (j) -1 d ( 1)1 Gj F jIj+4 A(j) (3.8)
g2Cd (2)

Then U1 (k) - gi (k) X (k) is a causal version of (3.5).

* :Proof

See Appendix 1. Q.E.D.

We write the closed loop solution as

t
, G X (3.9)

where Gi is block diagonal with components as calculated in Proposition
~(3.1l).

It is well known that the open loop and closed loop versions of the control

lead to the same state trajectory. For the open loop:

X t - (I-H G, - 2 G2 )- l D X (3.10)
1 0

U t  - G1 X
t

G i (I-H G - H2 G2 ) D Xo

0
- G 0 X (3.11)

Remarks

With state feedback the first order condition should actually be
* -

(Hi QiHiRii) Ui + P [Hi* Qi (DX + Hj Uj)] + Vui U1 [(H 1 Q1Hj + R i) U.

, + Hj Q1 (DX + Hi Ui)] -0

..
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One solution is the pair (3.5), which is the open loop solution. The only

case non-uniqueness may occur is when Vu Uj u U 1 1. But

Vu U Vj U - Vx Uj H.i Vx U H

and Ker H 0j

*V U V U I1
ui j uj i

The closed loop team solution is therefore the same as the open loop

solution in the sense they both achieve the lower bound of leader's cost.

It is, however, immediately noticed that such advantage is not enjoyed in

the multicriteria case, e.g., Nash or Stackelberg. In these cases, nested

information is used to eliminate V U. terms.
u± 3

3 3.2.2. Conditions for enforcing the team solution

(1) Sufficient conditions

In this section, we derive the sufficient conditions for the

leader to enforce his team solution using non-uniqueness of representation

of his team strategy. The condition will be composed of the first order

stationarity condition, the second order convexity condition, and the

*additional assumption that if the leader's strategy is fixed, follower's

optimization admits his part of the team solution as a globally mimimizing
* -,V

solution. The stationarity and the convexity conditions are investigated

further for any differentiable representation of leader's team strategy.

More specific conditions are then obtained for each case. For linear

representation, it is shown that the convexity condition and the global

minimum condition are always satisfied.

tu.
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We choose a representation of U1 as

U - Y (Z1 (U2 )) (3.12)

where Y1 (-) is chosen to satisfy

t
(1) arg min J 2 (YI (Zl (U2))' U2 ) U2  (3.13)

U2

(2) Y (Z 1 (u 2 ) = u t  (3.14)

We define functions with property (2) as class-T functions. The objective

here is to find sufficient conditions for Y under information structures (a),

(b), (c), given Y1 ( ' ) a class-T function. The information available to the

leader, Z1 (') is some function dependent on U2 in a causal manner. If Z

is independent of U2, leader will have no way of influencing the follower's

optimization.

We now state the sufficient conditions and the proof:

Theorem 3.2

Assume

'..() Y (Zl) is a causal, differentiable, class-T function

(ii) J2 (Y (Z1), U2 ) is convex

(iii) Z2 =jX

(iv) FL F - V2(Z 1  I (V total differential with respect to U2)
2 20U 2 (3.15)

G + H2 Q2 ) + F (R21G, + HI 2 (I-H G -H2 G2 ) D-0 (3.16)

tThen U1 - Y(Z ) will force U2 to adopt U2

,. . . . . . .-
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Proof:

If U1 nY (Z1) is a class-T function, J is convex, P [U J2 ] - 0,
2

u 2  2

then the global mimimum of J2 (' (Z1) U2) is attained with the pair
b:(U t

( 1t
, U2 ). Therefore, it sufficies to show that P [VU J2 ]i- 0

U U 22

'! U2 " ~

implies condition (iv). (P is the projection onto the space spannedmzU2
by z2.)

We know that knowing X° is sufficient to achieve the lower bound of the

cost function in a deterministic control problem. And since LX 0 and JXJ

are equivalent in the sense that they both achieve the minimum, we can

substitute P (projection as in (3.3), (3.4)) for P

[ J2 " 2 [(2 X) Q2X + (VU2 Y) R2 1Y + R2 2U2 1 - 0 (3.18)

VU X - H2 + H1 V Yu2X U2

P [(7 , 2 Y (Z1)) (H Q2 X + R21 Y(Zl)) + H2Q2X + R22 ]  0

t t
Let U GX , then Y (U " GX

2 2 2 1

It is sufficient then

' [(V Y(Z 1)l)' (HI Q2 + R2 IG l) + (H2 'Q2 + R22 G ) Xt t 0

t
U2  U 2

t

for all possible X .

L..
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t I1
X,- (I-H 1 G1 - H2 G2 ) D X°

and there is no restriction on X0 •

2(V Y (ZI)l )' (HI Q2 + R21GI) + (H12 Q2 + R22 G2 )] 2  D 0

t
U2  -u 2  Q.E.D.

t"::.X "

Discussion:

1. The above theorem holds for the information structures (a), (b), (c).

However, the solvability differs on each case due to the different

U (Z1) expressions. Let F be defined as in (3.16).

For (a), Z1 M lu"2 X o z2  Xo

V U ' (U2) I -F (3.19)
2

t
U2  U2

For (b), Z - X] , 2 LX

U YMX V Y (X) V X
2 : U 2

74 V X H VYV X +H
1 x(XV 2

2 2

.1 (' 1 Vx Y (X))"" 2

We need

V ( (X) I (I-HlVX , (X)I)1 12 . F

t t* - x-x x-x
or ( Y F)X)) (H2 + H1 ) F (3.20)

x. .Xt
-. X 
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For (c), Z1 " U2, x], z2 - .x]

Let V(') denote gradient with respect to ith variable, V denotes the

total gradient.

Then

VX m 1 (Vx Y(X U V2X +V (2 ) y (X,U2 ))+H 2.U- L '[ 2 (X U2  2) + H2

U2  2 2

- (I-H1 V(
1 ) g (X, U2)) - (H1  2 (2) + (X,U

, ' V 2 'V (XU 2 ) - V~ (l (X,U2) 
7u (2) ,V (X,U2)

1 v (l) (xu2 ) (I.H1 v() U (XU 2 ))-l

(HiVuC(2) Y (x,U2 ) + H2) + 2(2) Y (X,U2)2 2U17 Y (i)(IH Y(,

x ". Y (XU 2) (H + H1F) + .2 (2) y (X,u2) I F (3.21)

°o" -' t . t
X"'. X " X

U2 - U2 t U2 - t

Note that (3.21) reduces to (3.19) or (3.20) if VX (l) Y (X,U2) or

V(2) Y (XU 2) is set to zero respectively.

* As a design method, F is first solved from (3.16). Then depending on

the information structure, the appropriate Y (.) can be chosen.

However, the ability to choose # (*) differs in each case. Given F:

in (a), (c), V . can always be solved.

...............-.. ...--. . . . .
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_ in (b), it is necessary and sufficient Ker (H2 + HI F) C Ker F. (3.22)

Even though, given F, (c) does not seem to offer anything extra in terms

of the solvability of RSP, the additional term in (3.21) does provide

freedom to possibly attain other desirable features (e.g., sensitivity,

- convexity, etc. In comparing the three information structures, we con-

clude that (b) is more restrictive than (a) and (c). (c) offers

'- additional freedom to fine tune other features of the solution.

2. Some of the assumptions in the theorem may seem restrictive, however,

in fact, they are due to reasonable necessity.

- Assumption (i) restructs the class of leader's strategies, causality,

and class-T are vecessary, differentiability helps to carry out optimi-

zation analytically. In general, these are not very stringent since a

-.large class of functions still remain.

Assumption (ii) states the convexity condition. It is necessary to

guarantee the existence of at least one local relative mininvim.

- Assumption (iii) restricts the theorem to the perfect state information.

The decentralized case will be treated separately later.

- Assumption (iv) is the stationarity condition. The expression in (3.16)

is necessary and sufficient provided F is finite (the infinite gain case

will be discussed later).
. -

3. Note that I (Zi) I - constant matrix imposes a strong restriction

x

t
U- U

-2
-i*

•
* *. .
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on non-linear functions, since it implies that all the terms with order

higher than or equal to two will have to vanish on the team trajectory.

Furthermore, it will be shown that convexity condition also becomes very

-Irestrictive for the non-linear functions. Both of these suggest that

linear strategy as the ideal condidate since they are trivially satisfied.

However, for the state information case, it is shown in [21] that, in

certain examples, only non-linear solutions exist. Another property to

notice is that if an F exists in (3.16), it is causal. This is certainly

necessary for a linear strategy.

(ii) Stationarity and Convexity:

In this section, we examine the stationarity and the convexity conditions

((ii), (iv) respectively in more detail. The stationarity condition is

expressed in geometric language. The sufficient condition for convexity

is derived.

- Stationarity:
::..' I (3.6) w havN(N+l)

In (3.16), we have 2 (m xm2 ) unknowns (due to the causal structure

of F), and N (nx2 ) equations. Assume that all equations are independent.

-." Then we require N > n -1. If equality holds, the solution F is unique.
ml

If strict inequality holds, there are, in general, infinitely many

solutions. The advantage of this freedom and the ways of utilizing it

d requires further study. If inequality fails, we then have to solve F as

a function of X0, in which case, N >  -1 always holds.

-4
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In the case of state information (information structure (b)), we

have the additional equation (3.20) to solve. Observe that in the case of

linear strategy, Vx (y(x)),a constant matrix must have the last n columns

sequal to zero due to causality restriction. Therefore, for (3.20), the last

m2 columns of F (1m1m2 elements) must also be zero. We have then

N(NI) Nm N(N-1)
2 mlm2 1m2 2 mm2

* l.:; 2n + n g n r l ~ . i
unknowns and Nnm equations. Thus, we need NZ -n+1 in general, i.e. if all

2 
1

equations are independent. Putting together the above constraint and (3.16),

we have:

Proposition 3.3

The equation (3.16) has a solution F if

M ker(R2G1+H IV n Im(I-HIG1-H2G2)- DC ker (RGG+H2Q2) )Im(I-HIG1-HG2)-'D
i)21 1 1 12 2 2 -22l Im 1 1 2 2

(3.23)

(ii) rank(R21G1+H.Q2) (I-H1G- 2G2) - D rank(R 22G2+HQ 2) (I- 1G1-H2G2) - D

.3i (3.24)
":" 2n

(iii) N 2n -1.
. m1

Proof: Write (3.16) as

A - -F'B.

It is necessary and sufficient that

Im - ImF'B

* and ker A - ker F'B.

.- The first condition and one direction of the second condition (ker ACker F'B)

is taken care of by choosing F appropriately and condition (ii).

C -. ~~**" . . . . . . . .
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We know this is possible because N_ -L I implies number of unknowns is

greater than the number of constraints.

" Now we need ker AC ker F'B. Since F is free to be chosen, we

only need to require ker AC ker B. Substitute for A and B with respective

expressions, the result follows. Q.E.D.

Condition (i) means that for all possible team trajectories, xt

t t t ,^t Ot t tt.,UlR2 1 I-UHQxU u 2u2u 22 =0 This is certainly necessary since

if utR2uI+UHIQ x -0 and R22u2 H+ Qx = 0, then u2 is not the optimal
1 21 1 2

* .. solution for the follower, while ut=mP[R;l(HttE) is Condition (ii) simp

simply requires the number of unknowns to be greater than the number of

equations.

- Convexity

Recall that U2 is defined as the set of all functions, u2, measurable

with respect to the a-algebra generated by the information structure. U2

is certainly convex since if Ul),u(2)EU2 Lu( I) + (I-a)u(2)EU . We have2 , 2  U2, ct2  +(~ 2  U 2. ehv

assumed the differentiability of y(zl), therefore, J2 (y(zI),u2) is convex

over U2 if and only if V2 J2(y(zl) ,u )> 0

SVuJ 2 ((zl),u 2 ) - [(7 y(z1 ))'(R 21 y(zI)+H iQ2x)+R 22u2 +H 2Q2x]

VU2 J2 (y(zl),u2) R22
+ (H1 V uY(z ) +H 2)'Q2 (HI Vu Y (z

) + H
2)

u2  u2  12 2 u 2Y(l) 2 )

+1 [(V2 y(z)) (R21Yl(z) + HQ 2x) + (R21Y)(z)

2 2

+ H1 Q2x) 'V y(z)]. (3.25)

2

Since R22, Q2, R21 are all positive definite or positive semi-definite, we

only need
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(V 2(z)) (R2 1Yl(z) +HIQ2 x) + (R2 1Y(z) + HQ2 x) (V 2 Y(z 0-- 2 1 21 1 12 2 1 Qx 2 1

Vx and y(zI) generated by u2 E U2. (3.26)

2 2

If V 2 Y(z) # 0, the above condition is very difficult to be satisfied. The

2 2reason is that if we consider Vu2 y(z1 ) evaluated at a particular u2, we only

need (R2 1Y(zl)+HiQ2 x)lu 2 to have the opposite sign of V2 ) in one of its
22

orthogonal coordinates. This immediately suggests the desirability of the

2
linear strategy, since V y(z) 0 in that case

(iii) Linear Strategies

From the discussion in the previous sections, we see that the non-

linear representation of leader's strategy does not offer any advantage; in

fact, considerable care needs to be taken for convexity. Therefore, we now

specialize our attention to linear representation only.

Proposition 3.4

-, Assume

(i) y(z ) is a causal, differentiable, class-T function

(l z2 D {x°0

(iii) 3F9

[(R G + F'(R 2 1G+HQ 2 ) ] (D+HIG+H 2 G) - 0. (3.27)

(iii)' If zI = {x), zl 2  {x}, assume 3K9

(K+G1 )(H2 +H1 F) - F. (3.28)

S x,u 2 }, z2 = x}, assume HK9

) If) , F. (3.29)
" (G1-_KG 2 ) ( H 2 + H 1 F ) + K -F. (3.29)
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Then,

u 2} {x}, u- F(u 2-G x o )+G x o ; (3.30)

for z 1 -{x}, z2  x, uI -K(x-xt(xo))+GIX; (3.31)

for zI = {u 2 ,x}, z2 - {x}, uI = K(u2 -G2 x)+G 1 X; (3.32)

will force u2 to adopt u2, respectively.

Proof: Substitute the expression of u1 (.) into Theorem 3.2, the result then

follows. Q.E.D.

Note that the convexity condition vanishes due to the fact

2u2(Z) = 0. The conditions are easy to verify since they only involve
u 2 11

linear equations. The gain matrices are all causal (if they exist), therefore,

the solution is also realizable (causality is ensured VG1 ,G2 in diagonal

or noncausal representation).

3.2.3. Examples

We shall examine some simple scalar, 2-stage examples. Team and

RSP under information structures (a), (b) are solved using the technique

derived before. The RSP solutions are verified by substituting them back

into J2 and solve for the optimal u2. The effect of weighting matrix

coefficients on the solvability and the implication of different information

structures ((a) vs. (b)) are clearly illustrated.

Consider a scalar, 2-stage system

x(2) - 2x(1) + ul(1) + u2 (1)

x(l) - x(O) + ul(0) - u2 (0)

b.J

............................................................ 2.-.
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J - 2x 2(2) +x 2(1) +x 2(0) +2u 2 (1) +u 0 1 0
1 1 u1 0+ 2(1 2(

2 (2+ 2  2 2 2 2 2
~~(2)+ ()+2x (0) +au (0) +bu 1 ) +cu (0) +du2()

Apply static-conversion

[x(o] +[ [0] [u(0)1 [20 01i (
x- x(l) x(O)+ 1 + L

x(2) 2 2 1 (1)U2

; : :7, J1- x'[ 1 gx + U'l ]Ul +u22

oeai [1 0] [ +102 0 20

22 ' 0 0] x + u0 u. + u u[ .

J 2 x 1 -0 21~2

? i 0 0 1i

oTen-auslcnrllw, rm(.) r

". "."U 1 - -IX 2 0 1

2 [ 0

Using Proposition 3.1, we transform them to the causal representation

[ 3/7 0 01
y37 0 0_1  o x.

L4 The team trajectory is [1
x 1/7 x(O)

1/14.
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IL and the open loop control law is

" ;" -3/"7

- 1

0 3/7

2 L -1/7

RSP

We now assume linear strategy and apply Proposition 3.4.

K" - Information structure (a)

Let

" :iu 1 - F u2 -G72Xo ) + GI~O"

F satisfies
't0 0

[F' (H{Q2 + R21G1 ) + (H2 Q2 + R22G2)] (D+HIG+ 2G2) = 0f 1-
Restrict F to the causal structure F - Substitute in numerical

values, we obtain 2 3]

(4-6a)f1 + (l-b)f 2 - 4-6c

2d-1
f3 1-b

" We notice immediately that F is nonunique (3 variables and 2 equations),

however, given a,b,c,d, f is unique. This points out the possibility
fl 3

that given the weighting parameters, we can tune F to achieve better per-

formance in, say, parameter sensitivity; or, given the desired F, we can tune
2n

the parameters. We can also check that N>- 1 (2> 1). Therefore, provided

'equations are all independent, we should have 1 (2-1) degree of freedom).
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For some values of a,b,c,d, F may not exist at all (this points to

the importance of suboptimal strategy) even in this simple example, e.g.,

* 4 4
b l, a-, c#-. However, we are able to say F exists generically.

To verify that the stated strategy .does enforce team, we substitute in some

numerical values for (a,b,c,d) and solve for the optimal u2.

- a=c d 1 b - 0 F set f =0 arbitrarily

6 - (diagonal structure)
* u1(0) u2( ) - 7x(O)

1 u2()+14x(o).
E" 2 J2

Substitute in J and set 2 = 2 = 0, we obtain

2 a u2 (0) - 7 x()

u2 (l) - x(0)2 7

* "as expected.

~-" a-b- 0 (R21 -0, i.e., u1 is not penalized directly in J2)-21 1 2-d-

Set f 2O arbitrarily

F[

0 1

u2(0) 3
u l(O) 2 T4 x(0)

u1 (1) - u2 (1) + x(O)

Substitute in J and carry out the minimization. We obtain
2

3 () XO

'.' U2(l) - -X

ii7
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U as expected. In the second case, even though uI does not enter J2 directly,

it does affect J2 through x.

- Information structure (b)

Now we examine RSP when only the values of the state variables are available

to the leader. We shall see that the solvability becomes very stringent.

2n 2n
(For generic solvability weneed N_> -F- 1, N2, -l 1=3, thus the example

,. here is in fact generically unsolvable.)

Consider now the representation

Ul " K(x-(D+HIG1+H 2G2)x(O)) +G x

where K solves

(K+G )(H 2 +H F) = F.

I F is the same as in the last section. Let

.:K 
[ k 0 0k- k2  k 3  0

,." -"k fi arbitrary fl-f3no

-.: k2  arbitrary

k - "

?, i kl,k2 do not enter into the solution, since uI cannot deduce any information of

"':iu 2 from x(0), the dependence of x(O) has not consequence to the solution.

~The same reasoning tells us that a penalty on ul(0) will also have no effect

i" -:.on the solution.

V.' Note that given (a,b,c,d) f3 is determined uniquely. Therefore,

f f30 is a strict requirement on the problem (if d#l-, the problem has no
3 2n

":solution). This coincides with the statement before that since NJq +i, the

"m

L0
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U problem is generically unsolvable. Here we proceed with the assumption d-2".i 2

. . in order to verify that the strategy does indeed enforce the team solution.

- - Let c-1, b=O, then f -2
2

k2  -

1
ul(1) = 14 x(O) - 2u2 (O)

3
u2(0) = x(O)

,, -. ~u2(1) _-_= ()
7

11

- Let c-1, b=O, then f =1
2 2

'".K k2  0

2. 2

I; U (1)= -x(O)

3u (o) -7 x(O)

u2(l) - 1x(O).

3.3. Behavior of Leader's Cost Under Large Threat

A natural question to pose after obtaining the results of the

previous section is what can be done when there exists no solution to the

set of conditions stated. It will be seen in this section that under certain

mild conditions, infinite threat from the leader (i.e., leader threatens

to drive the follower's cost to infinity if the follower does not perform

as desired) can achieve the team solution for the leader. It therefore seems

[..
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I 1promising that perhaps near-team cost can be attained by using a very large

but finite threat when the previously stated conditions are not satisfied.

': However, this expectation will be shown to be false in general if the leader's

- representation is continuous in u2  No matter how large (but finite) the

leader wants to penalize the follower's deviation, he cannot achieve arbitrary

closeness to his team cost.

3.3.1. Solvability of RSP Under Infinite Threat

We shall be concerned with linear representation of the leader's

strategy only. We study the solvability of RSP when the threat in the leader's

strategy is weighted by a gain that tends to infinity. It is shown that under

some mild conditions RSP is solved.

m iWithout loss of generality (in the class of deterministic,

centralized information structures), we assume information structure (a).

Assume we adopt the representation (3.30) for the leader's strategy

u(U 2) F(u2G0x + GX

*. *.""and assume the optimal strategy of the follower, given that the leader has

announced his strategy, is

* 0
S2X + AGx , (3.33)

where (G x ,G xo) is the team solution pair. From (3.18),

p[F' (H Q2x + R21ul) + H2Q2x + R22u2 ] 0 (3.34)22u2 0:.

u (u*) - FAGx +Glx (3.35)
1 2 o 1lo

i' , .:-,:- ., .. -: '. - - .- .- - .-.. .-. -. - .. -. . .. . ,. . . .- -.- - .- - - -.... ... - - .
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x = Dx + H u l (u*) + H u

SDx + HIG0 x +H2G 0 x + HIFAGx + H AGx
o lb1 22o0 1 o 2 o

. -(D+HIG 0 +H2G2)xo + (HIF+H2)AGX (3.36)1 1 2 G 2x0 H1 F+ 2)A0

= t + Ax. (3.37)

Note that

" " 0  Gixt (by the definition of G.). (3.38)

Rewrite (3.33), (3.35) using (3.38) and substitute together with (3.37) into

(3.34)

p (F' (H'Q2+R2 1GI) + H'Q2 +R2 2 G2)x
t + F' (H'Q2Ax+R 2 1FAGx)

+H'Q Ax+R 22 Gx]1 0|~~~ 2 R22 Go
or

,[F' (H'Q+R 2lG) + H2Q2+R22G (D+ HIG1+H 2G2)] + [F' (HiQ2 (H1F+H2) + R21F)

1 0+ H Q2 (HIF+H 2) + R 22]IAG}x ° 0 0 YXo"

Since x can be any vector in Rn, we haveo

(F' (HIQ2+R2 +HQ 2+R22G2) (D+H1GI+H 2G2) ]+[R 22+H Q2H2+F'H1Q2 HF

+ F'R2 1 F+F'H{Q2H2+H'QHIFIAG} - 0 (3.39)

G" - [ (R22+H'Q2H2 )+F' (H Q2HI+R21)F + F 'HIQ2H 2+HQ 2HIF]- [(F' (HiQ2
0 0

+R21GI) + H'Q2 +R22 G2) (D+HIGI+H2G) ]. (3.40)

If F satisfies (3.27), then AG-0, and the leader's team solution is enforced.

L If there exists no F satisfying (3.27), the team solution is still attainable

by the following.

1-2""'""" " -.2 -- -"- " ' ' " .. .
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Proposition 3.5

If F-0 0 VF

. and (H1Q 2H1+R2 1)

is nonsingular, then the representation of the leader's strategy as in (3.30)

will force the follower to adopt the corresponding team strategy.

Proof: Let F-'-, then along any direction in the R space the denomi-

2nator is of OOFI ) and the numerator is of O(IFI). Therefore, AG- 0

i componentwise, AG=0 implies the leader's team solution is enforced. Q.E.D.

The above result is theoretically useful since it says that RSP

is always solvable for this information structure provided that infinite gain

is possible. However, the infinite threat is not physically realizable,

.-- therefore, it is natural to ask whether the team cost can be approached

arbitrarily close given a finite gain that is large enough.

*' 3.3.2. Effect of Finiteness of Threat

It is shown in this section that if we consider F not identically

equal to infinity, the largeness of F will not enable the leader to approach

team cost arbitrarily. A key assumption in Proposition 3.5 is that F.-00,

which means that even though F is an infinite threat, if the follower plays

team exactly, the threat will have no effect. However, for the case F being

finite (no matter how large), the follower's decision cannot be made exactly

team (first order condition in Section 3.2 is assumed not satisfied). The

deviation can be shown - 0(IFI- ), which is then amplified by F. Therefore,

there will be a sizable deviation in the leader's cost.

[

* * . *..
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We first examine the effect of control offsets to the leader's

cost

,* G 1 x 0 + FAGx

0 (3.40)

Then

"x -Ax + HIG 0x +H 0 G0 x + H FAGx + H2AGx

t= x +(HIF+H 2 )AGx (3.41)

t t t t1 (UlU2) = +Ax)Q (xt +Ax)+ (Ul+Au)'R (u+AU )

t t
+ (u2+Au2) 'R 2 (u2+Au2)

t 1 + AJl (3.42)

Ail Xo(AG'[(HIF+H2) QI(D+HIGI+H2 G2) + F RIIG + R 2G2].0 1" 2 1 1 1 1 RIIF o,

: -1+ [G(D+H1GI+H2G2)I'Q1(H1F+H2)+ G +G 2 RI2] G

+ AG'[(H 1F+H2 ) 'Q 1(H1F+H2)+ F'RI11F+ R12]AG)x° . (3.43)

; .If the leader's cost is continuous with respect to IFI, letting F- in

(3.43) should imply AJ1 -0. However, we will see that in general it is

- .not true by deriving -irm J" A F-) -, we retain the dominant terms
1 o1

only

AG--(F'(H l)+ 'F'(H'Q (3.44)

A l AG'F' ((HIQIHI+RI)G1 + HIQ (D+H2 G2)

- (HfQ 1HI+Rll)F(F' (HQ 2HI+R 2 1)F)-
1 F'(HQ 2+R21 G1)) (3.45)

- where ker F-0 has been assumed (generically true if m 1 m2).

1
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=Since ker F-0 orthogonal matrices U,V

F MU[] (3.46)

AU'FV' -:
where Fis nonsingular. Then, let R- Hj'QlH 1 +R 21 "O'

F(FIRF)1'F' F'(V'[F' O]U'RU V

0Let ~ iV1 '

*U'~ R 1 2 (I U'RI I RI) (3.47)

F(F'RF)- 1F - FV''R 1 t)-VFI

- U(U'FV')F-' R-YF'1 (VF'U)U'

11

MHQ 21 1-R-F '- g,0U

AG'F' -HI2 +R2G )'F(F'(HIQ 2 H IR 2 1) F'. .

* .~ As F-

A'F ).-(H Q+ R~1 1  U 1 U as derived before (3.49)

Aj (H 'q2 I R 'U' ((H'Q H+Rll)G + HiQl(D+H2GO2)1HQ R2 1 Gl) 1U l11 1

-(H{Q H1 + R ) UR7- Y (H'Q2 I R2 jG 1 ) J(3.50)

L which in general is nonzero, thus proving the asserted result.
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It is certainly of importance to investigate in the case of finite

threat and failure of the first order condition whether there exists a near

optimal strategy for the leader. One method is to assume one representation

(selected from the linear class) and perform parameter optimization. A

possible conjecture is that the minimum solution F in (3.27) will correspond

to the nearest optimal solution. However, a verification of this conjecture

is not yet available.

Note that from (3.50), AJ will in fact tend to zero on a variety
1

of the parameter space. Since we are only interested in this result when

conditions like (3.27) fial, in some cases it may happen that this variety

will have high probability of occurrence on the subset of the parameter space

where (3.27) fails. However, it-appears "generically" that Ai1tends to a

nonzero limit for Stackelberg strategy with very large threat.

It should be noted also that the conclusion drawn here is foru

as a continuous function of u 'If u1is allowed to be discontinuous, AJ1

will in fact be zero for finite threats that are large enough.

3.3.3. Examples

We use the example in Section 3.2.3 to illustrate the effect of

*infinite and finite threats. It is shown that if each component of the

threat tends to infinity at equal rate when the leader announces his strategy,

then the team solution is indeed enforced. However, if the threat

coefficients tend to infinity (at equal rate) in the leader's cost, the

* limiting cost is shown to be higher than the team cost.

From Secion 3.2.3, we have the following representation for u 1 (O)

and u 1 )
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U1 (0) - fl(u 2(0)- x)- x

3 1 1
ul(1) - f2(u2()- 7 x) + f3(u(1)+ x x

where fl,f2f are coefficients in the threat matrix. Then,
24 3 2O

x(1) o+fl(u2(0)-I x)-U(0)

15331
x(2) - x + 2f (u2 (0) -  Xo) + 3f (u 2 (0 ) -  X + f 3 (u 2 (1 ) +  X

- 2u2 (0) + u2 (1).

a Let

u2 (0) -7 X + Agox

1u2 (1) -+ Agx0.

27 +o g1

Then 3Te Ul(0) - (fAg- 7 )x

u l) - (f2Ago+f 3 Agl- )X.

When fl,f 2,f3 all tend to +- at equal rate, asymptotically

2(l+b) f2f3-(l+3b-3a-3ab) flf3
1~~~ 4 [e(+b) f3 (5 +a)f+l+b) f2+4flf 2) -f3 (2fl+(1+b)f2 ) 2I

:. " -2((l+b)f2+2f1 ) (1+b)f2-2(2-3a)fl)+(b-1) 2(+~ 2(+) +ff
Ag 2 2 +4flf2)_f3(2 f1 +(l+b)f 2) " .

14[(l+b)f3((5+a)fl+1+)ff f 2)

.: Thus, when ff 3"++

Ths whe f f

123"Ag o "Ag 1  0

U and the team solution is enforced by the leader.

If we retain fl,f2 ,f3 and substitute the expressions into J1, we

get
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t + j

1 1

where is the team cost and AJ1 is the deviation due to Ag and Ag1

As fl,f2f 3)- at equal rate,

""AJ I  (i2+fI 2 A2 2 2
1f 4f3AgI + (8f2f 3+8flf3 )Ag AgI.

1-(fj8l242'o4f31 coefficients

From the above, we know AgoAgI~ 0 . But the quadratic-f coefficients

make each term tending to a finite limit. If

limfIf - 1 Vi,jE {1,2,3}f j
f i

x(1) - (7+ (fl-l)Ag o)x

x(2) - (-2Ago+ Ag1 + 2fAgo+ f2Ago
+ f3 Agl)xo

.

Substitution of these expressions into J and minimization with respect to

u2(0) and u2(1) render

(6c-4)+(4-6a)f1-(1+b)f2  2 2
* 14+ ((5+a)f + ((1+b) f +4f f -1Ofl-4f +5+c)Ag

14 ' 1 2 1 210 1  20

+ (2f1f3 + (1+b)f 2f3-2f3 + 2f1 + f2-2)Ag I - 0

* and
(I-b) 3+(1-2d)(1~f1 + ((l+b) f2f3 + 2flf 3 + 2fl+ f2-2f3-2)Ag

1423 13 1 2 3 0

S+ ((1+b)f2+ 2f3 + (1+d))AgI - 0.

When fl,f 2,f3 are chosen to satisfy the sufficiency conditions derived in

Section 3.3.2, namely,

(6c-4) + (4-6a)f -(l+b)f 0
1 2

(1-b)f 3 +(1-2d) -0,
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then Ago  AgI  0

and the team solution is enforced

1 (lia AJ1 b- [22(4b+6a+6ab) 2 + 4(8-b2 -37a-3b+ab)2f i ( +a+Sb+ab)2

2+ 15(8-b -37a-3b+ab) (4b+ba+6ab)].

Thus, we conclude that the team cost cannot be approached arbitrarily close

with large threats.

It has been mentioned in the previous section that we should

examine the continuity of Jl only for the cases the sufficiency conditions

in Section 3.2 fail. In this example, they occur at a- -or b1. For b- I
3

Aj 1  1 2 [352(i+3a)2 + 64(1-9a)2 + 256(i-9a)(l+3a)].
k6+2a)

-:' s

.4

° '"

-._9.



3.4 Decentralized and Stochastic RSP

f 3.4.1. Introduction

The cases we shall examine here are the deterministic decentralized

and stochastic state feedback information structures. Due to the difficulty

of the general decentralized team problem (as will be explained later), the

L team problem is solved under the restriction of linear strategies. Sufficient

conditions similar to those obtained in section 3.2 can then be stated, but,

as to be expected, they become slightly more stringent. In the stochastic

case, the problem is not solved in general; it is only after some further

restrictions are imposed on the information structure that non-void conditions

for RSP can be obtained.

Intuitively, RSP can be solved in two ways. one is to use the

infinite threat concept discussed in section 3.3. The other is to alter the

follower's objective function so that the optimal follower strategy coincides

with the team strategy. The former method meets with difficulties in both

decentralized and noisy state information cases. In the first case, the leader

can only enforce the team trajectory projected onto his observation space,

which in general does not imply that his team cost is attained. In the second

case, the leader is unable to implement the threat term (that vanishes upon the

enforcement of the team solution) due to the random nature of the state traj cc-

tory. The latter method, however, can be applied to the deterministic decen-

tralized RSP provided linear representations of the strategies are constrained.

But the method still fails in the stochastic case. Therefore, we allow the

leader to have access to the follower's past control, the problem then reduces

to the same framework as before.
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3.4.2. Decentralized RSP

We approach RSP under information structure (d) in the same manner

U as in section 3.2. However, now the team solution is not as easily obtainable

as in the previous case. It is known that the general team solution under the

decentralized information pattern is in general non-linear, and, in fact, the

L problem is not always analytically solvable ([151, [16]). The difficulty lies

in the dual role of the control variables, namely, control and estimation.

Specifically, if the projection approach used in section 3.2 is used here, the

projections of the state variables onto the observation space cannot be evalu-

ated since the distribution of the states are affected by the past controls

[ which in turn depend on the projection of the states. Therefore, here we con-

strain the strategies to be linear in observation. The optimization of

leader's performance is carried out under this constraint by using the para-

meter optimization technique (the discrete-time and finite-horizon equivalent

of the continuous time approach in [17]). The leader then tries to enforce

this solution. once linearity is assumed, sufficient conditions for RSP solu-

tions can be derived in the same way as in section 3.2, but, as expected, these

conditions are more stringent than the centralized, deterministic counterparts.

Team Solution Under Linear Representation Constraint

In this section, we use the parameter optimization technique to obtain

Q the best linear solution for the leader's team problem. The decentralized out-

puts are assumed to be linear functions of the past states, i.e.,
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(k) C  ( X (3.51)

is the observation vector for player i at stage k. The states may be noise-

corrupted.

Convert the observations to static form in the usual way.

YI cx (3.52)

where Ci is a block lower triangular matrix.

The objective is to solve
7.;

min J1  - E LX Q1 X +U1 RlIUl + U2 R12U2] (3.53)

such that

U - Gi - 1,2

Gi is a block lower triangular matrix.

-- The following proposition states the sufficient conditions for the above

problem.

Proposition 3.6

If there exists a unique quadruplet (G1, G2 , P, A) satisfying,,2'

(I-H1 GI C - H2G2C2 ) P (I-HIGIC1 - H2G2C2 )' D Zo D (3.54)

(Q1 + C1 G1 RllG1C1 + C2 G2 R12G2C2 )

+ (I-H G C1 - H2 G2 C2 ) A (I-H 1 G1 C, - H2 G2 C2 ) 0 (3.55)

ut 1 tC1 P (C'G 1 R1 - (I-HG1 C1 - G2 C2 )'A H1) ] - 0 (3.56)
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ut 2  C2 p (C2 G2 R12 - (I-H1G1C1 - H2G2C2)' AH 2) 3 - 0 (3.57)

(uti (.)=A block upper triangular portion of the matrix with block

dimension yi x M (3.58)

R + A >o (3.59)

Ai1 + H 1 H1> 0 (3.60)

P>0

(where o E [Xo X0'D

then

U l - G1 Y1  (3.61)

U2  - G2 Y2  (3.62)

solve the problem (3.53)

Proof: See Appendix II. Q.E.D.

• ., Conditions for Enforcing the Team Solution

We now derive the sufficient conditions for the leader to enforce

• his best linear decentralized team solution. The development is similar to

the centralized case, in fact, some of the previous results are directly

applicable here.

Theorem 3.7

Let zi  L Yi(o),--, Yi(k)]

L
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* * Assume

M Y (ZI) is a causal, differentiable, class-T function

"" "" (ii) J2 ( Y (Zl )' u2 ) is convex over the convex set U2  (u) u2(k ) measurable

:>[ with respect to fY2 (0),..., Y2 (k)]3

(iii) a F

F solves

" "(R22 G2 C2 + H2 'Q2 ) + F(R 21 G1 C1 + H1 Q2 )] (I-Hl G1  - 12 G2 C2)D 0

and

F Y (y 1)I C1 (H1 F + H2)
"2Y t. Y

then lm

., - y(Zl) will force u2 to play u2

proof-

Assumptions (i), (ii) guarantee that the minimization of J2 ( 1(Z ),U2 )

u2  t thnresults in u2 = u2 , then (u, u2) is a global minimum of ( Y(Zl)'U 2 )"

Therefore, it suffices to show that P2[Vu J2]1 - 0 implies condition (iii).
2

P2 [V J2] P(q(Vu X)Q 2  + (V u Y) R2 1 Y + R22 u2 ] (3.65)
2 2 2

U2 X n H2 + E7, 7 Y (3.66)

2

V T (y )C1 (H2 +H,1 u (3.67)
yl U 2

(3.65) becomes

P[ "' (y)) (H1 Q2  + 22 (y))+ 2  0 (3.68)
2

when u2 G 2 Y2 G2 C2 X

-.: . -~- .

:-"Y (yl) =G, C, X

" r..,.o °% ., ..*•",-.. . ' % °. ... '. " '. .'o . " -" .-".'1." "' °°. " " "'2 '" ' '.-=... .- ,t, e , ,: ,. -% , , . . "" " " " ," -",- -" ..r.:',,, .a-7 7 u ' " ,, ..',*, ' ' ,,' ' .
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(3.68) becomes

I[(Vu2 Y(y I (HIQ2 + R2 1 GIC ) + H02 + R22G2C2] X - 0

t
X - (I-HG1  - HGC D X

It is sufficient that

S[(VuY(Y (H 2+ R + 'Q2 + R22 G2 C21 (IH1 G1 C1  H2 C2 ) 0

t (3.69)

Lt V Y(yl) IF

yl. i Y1

Substitute in (3.67) and (3.69), result follows.

It is seen that the result is almost identical to that of the full state

information case Therefore, all the qualitative discussion pertaining to

that case carries over here. The specialization to linear strategy is straight

forward, therefore is omitted here.

3.43 St.,chastic RSP:

" As mentioned in the introduction, stochastic RSP with state infor-

* mation only is not solvable due to the randomness of the team trajectory.

The only information structure that can be shown solvable under the stochastic

setting is the one including the perfect knowledge of follower's action. This

assumption exactly bypasses the difficulty since u2 is known and can be used

-. tto check against u2 . Once this assumption is made, the derivation becomes

almost identical as in section 3.2.

For LQ setting given state information, the separation theorem

holds, therefore, the team optimal solutions are as in (3.9)

r.: ui  Gi X
uUiX

where Gi is block diagonal.

"¢ .,-' ",;.-,y; .- ,-:.-.e. .-, 2-'..'.-'....,.."..."..-.-..."."......,."."'."'"."."".".".""'".."."".."."'..'.".."..."" ""'...."...""."""."-
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We can then ixmediately state the sufficient conditions.

Theorem 3.8

Given information structure (e)

Assume

(i) (Z1) is a causal, differentiable, class-T function
(ii) 52 (Y(ZI, u2 ) is convex over the convex set U2 - (u u (k) measurable

2 1 22 2 2 ()maual

with respect to X (0), . . . , X(k)]
i ~ (iii) . aF

[F'(HjQ2 + R2 1 G1 ) + (H22 + R22 G2 ) (I-H1 G1 " HG 2 ) ' [D I] -0 (3.70)

and
((2)

S(X, u)I (H2 + H, F) +v (2) y(X, u2)l " F (3.71)
x 2) 2 1• '2.2

Then

u1 y (Z1) will force u2 to adopt u2

Proof:

Using the proof of Theorem 3.2, we get

(Vu2Y(X, u2 )1 )'(H! Q2 +R 21G1 ) + (HQ 2 +R 22 G2 )] X
t

t
u 2 u2:- 2 " 2

X "

*t t tX -D X + HG X +HG X + W

'-I Xt " (I-HII - H2G2)' [D I] X.

* W

It is sufficient that
2V [ Y(X )1 )'(H1Q 2 +R 21 Gl) + 2 2 G2 ) (I-H1G1-H2G2 ) D -

[( (,u 2  (HQu2

u a ut (3.72)
.. 2 2

X -tV .. . . -. *

• , o2 ~~.._ * ~L-i~f~fi :fli *-
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Now

V >(X, u2) satisfies (from (3.21))

(1) V)I 2 +y(xX, u(2

V Y y (X, u2  (H + HVe uY (X, u2  V 2 Y (x, u2) - (x, u2

i Xm-xt x - xt xmX - 2 xm-xt
- 2 2 2 u2 2 u2 2 2

Let F V2 (X, u2)I , we have the stated result

": t
2 u2  " u2

SIn (3.70), we have N (N + r) m xu

and N (2n x i 2 ) equations. Then if N > -m ,Filgnrcly ovbe

-:; The stochastic RSP is still an open problem. Even though we know

" :" !:-that under the state information solution, solution does not exist. It will

':' be of a great deal of interest to see how near-optimal is the parameter

" '" optimization approach. The near-optinality of some intuitive method, such

,. as the use of best team state trajectory estimate or Just the plain certainty

equivalence, should also be investigated.

U 2)

.4

uo u
2, 2

.j"- "1"

*4n

an -.

-'.o

Th tcatcRPi tl nopnpolm vntog eko

thtudrtestt nomtonsltosluinde o eit twl

', ";'' ,,'-b-. of " a',: great' ".- al ".-" interest to. see how.... .. . .neropia .... th parameter - -..
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i! .4. CONCLUSION

In this report, we have studied the application of dynamic-to-static

I cconversion technique to the Restricted Stackelberg Problem. RSP is a

restricted version of the Stackelberg equilibrium solution concept. It is

an important modeling tool for the economic systems and large scale engineering

systems.

The definitions of the team, Stackelberg, and restricted Stackelberg

problems are first stated. We then give the precise statement of the problem

U under consideration and introduce the conversion technique which is the

backbone of this analysis. The past work and results are briefly summarized

and the contributions of this report and pointed out to close off Chapter 2.

The main results and discussions are presented in Chapter 3. RSP

under five different information structures is considered. Three of the

information structures are centralized, deterministic, the others are

n. deterministic decentralized and stochastic. The deterministic centralized

information patterns illustrate how RSP is approached and permits the

examination of various qualitative aspects of its solution. They also show

,- how the restriction on the information structure affects the solvability of

*" RSP. The decentralized information pattern encounters a particular difficulty

with regard to RSP, viz., in the solution of the corresponding team problem.

Since the team solution is difficult to obtain in general, we settle for

a suboptimal result, the best linear team solution. The sufficient conditions

for the leader to enforce this solution are then derived. The stochastic

information patterns create another difficulty in RSP, the inability to
|1
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formulate the threat in the presence of random noise. This problem is

bypassed by assuming the follower's past controls to be available to the

leader.

The centralized cases are studied in detail. Sufficient conditions

for RSP solutions are derived and how they are affected by the information

structure of the leader is discussed. We then examine the stationarity and

the convexity conditions for the general nonlinear representation of the

leader's strategy to ensure that the team solution is indeed also the follower's

* optimal operating point. The result restricted to linear representations of

the leader's strategy is then presented, motivated by the observation that

nonlinearity does not add any significant advantage and poses difficulty in

the convexity condition. An example is also presented to verify the derived

results.

*-..-* .'" Noting that the sufficient conditions are not always satisfied, a

natural query arises: in the case the stated conditions fail to be satisfied,

can the leader attain a cost arbitrarily close to the team cost by choosing

a threat as large as he desires (but finite)? To address this question it

is found that if the threat is infinite, RSP is solved (under some mild

conditions). However, if the threat is large but finite (no matter how large),

in general there is always an offset, bounded away from zero, in his cost from

the team cost. It should be noted that this assertion is not true if

*' discontinuous strategies are allowed. This result, though reduces the hope

of a continuous, guaranteed near optimal solution, does offer a design

alternative if the offset is not very large. An example is also presented

to verify the above result.

"°** ,-
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Strictly speaking, the general decentralized RSP is not solved. The

problem lies in the fact that the corresponding team solution is not solved

in general. However, if the structure of strategies is restricted to linear,

then, by using parameter optimization, the team problem can be solved. RSP is

solved the same way as the centralized case once the linearity assumption is

* adopted. The stochastic case with state information is not solved (and seems

unsolvable in its full generality) due to the lack of redundant information to

* implement the threat (the state trajectory corresponds to a sample path of

* a random process). To bypass the problem, we allow the leader to have access

to the follower's past controls. The problem then reduces to the deterministic

case. The stochastic decentralized RSP with the leader having the follower's

* .. past controls, though not presented, can be tackled in the siam manner as the

combination of the above two problems. However, the linear representation

constraint again has to be used. Suboptimal results may be obtained via

- . parameter optimization, but are not pursued in this report.

* The static conversion has proved invaluable in simplifying the

conditions and the analysis of RSP. There certainly remain a great deal of

open questions, even for this special type of problem. The suboptimal

strategies need to be investigated in the deterministic case when the derived

conditions are not satisfied, and in the stochastic case when the information

is restricted to the past states only. The hierarchical result also needs

to be developed (it will be an easy extension of the results stated here)

because of the unique feature of RSP that the follower is under no protection

from the leader's manipulation. The conditions for RSP solutions should be

interpreted from a qualitative, perhaps geomet-&ic, point of view. Specific

~ applications should also be investigated to demonstrate that RSP is not merely

a theoretical pastime but has definite practical value.
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APPENDIX I

PROOF OF PROPOSITION 3.1

We prove it by induction

I. At stage N-i, calculate u i(N-i) in terms of x(N-1)

. u (N-i) - -R 1 (N-i) (N-i)Q (N)x(N)

- -Rj 1 (N-1)B' (N-1)QI(N) (A(N-l)x(N-1) + B1 (N-1)u (N-1)

+ B2 (N-l)u 2 (N-1))

()(1)luNl)i (1

(~d) IBi(i 'dAN2Nl L(N-1 (2) A(N-1)x(N-1).

By assumption,

F u(N-1) 1 Fg(N-1)1
I j--I - A(N-)x(N-1).
L u2 (N-1)J 92 (N-)J

2. Assume similar procedure can be carried out to obtain

ui(J)  gi(J)x(J) for j "k+l,...,N-l.

_Then,

x(t) w Tr(A(i) +Bl(i)gl(pi)+B 2 (i)g 2 (i))x(k+l))
u)i-k+l

N -1u i(k) E -R z(k) 1 1(k)t (1-l,k)Q 1(.)x(9.)
X-k+1 l

N -1 ,1-

* [ -E R (k)B(k)0'(Xl,k)Ql(Z) w (A(i)
* -k+l li i-k+l

+ Bl(i)gp (i) + B2(1)92 Ix(k+l)

* K = d~k+lx(k+l).

--. ;".-
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We can now apply the same reduction as stage N-i, and the result follows

by induction. Q.E.D.
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APPENDIX II

PROOF OF PROPOSITION 3.6

Substitute ui - GiY into (3.53)

Jl - E{x'(Q 1 + CIGIR11G1C1 
+ C2G2R1 2G2C2)x}

- tr{ (Ql + CIGIRIIGIC 1 + C2G2RI2G2C2)E[x x']}.

Substitute uiM GiYi into the state equation, then

(I-H1G1C1-H2G2C2)x - Dxo .

Therefore,

(I-H1G1CI-H2G2C2)E[x x'] (I-HIG1C1-H2G2C2)' - DE[x X D'

where

DE[x ox]D' - DEoD'

is assumed known.

Let P-E[x x'] and use matrix Lagrange multiplier, we have

converted the problem to one that chooses G1, G2, P, A to minimize

L(GI,G 2,P,A) - tr[(Q + CIGIRIIGICI + C2G' R G C )P
1291 1 1 1 ~~ 12G2 2)

+ A((I-HGICI-H2 G2C2)P(I-H1G1C -H2G2C2) '-D0 D')].

Set

dL GGPA+ W)I - VAAER (N+l) nx (N+l) n

we get

Set (I-H1G1C1-H2G2C2)P(I-H1
G1 C1 -H2G2C2) 

- DD '. 
(3.54)

dL - (+)on(N+l)n
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we get

I (I ss)Q +CGjRlG1C + C'G'R GC) C, (.IG-H .H C 0
1 1 11111 2222 11 2 22AI1 G1H 2G2 C2

(3.55)

.. * : Set NmlxNr 1dL (G-+GGPA)j 0 VAGIE lower block triangular R 1

1 29 E.0 1 matrices with each block of

dimension m1xr1

tr{C1P(CGR - (I-H1G1C-H 2G2C2 )'AH AG1 } =0.

*A1 ~,t{ 1 ({ 1 1 - 1(I-HG C-H 1 1

Let k 1  k
K - C1P(CjGjRll- (I-H 1G1 C1-H2 G2 C2 )' H

where k - rlxm I block

AG 0

L LAG i ....... AGNNI

AGiJ nmxrl block

SAGi GN-,N-
trKAG k ... kiN] + ""+ [k_,NI _,N] + k NN AGNN

11.iN.'I ¥AGi

m xr
-0 VAGj 6 1

. [k k 1 0
11 1N

'kN-1.,N.lkN,...,N]

NN] a0.
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Or, ut [K]  .

Similarly for G2, we have

ut (C P(C'G;R- (I-HIGC-H 2G2C2 )'AH2 ] - 0.S i 2 2 12 I H - 22 2 2L

For second order sufficiency conditions, we need

d2

-- L(G,G 2 + AG2,P,A)l C-0 
> 0

we need

tr(C iPC i ) ( AG ( R i + Hi AHi ) AG  > 0 i- 1,2.

Sufficient conditions are

P > 0 VAGI r lower block triangular

ii+ H'AH > 0 i - , 2. Q.E.D.
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